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Abstract-Traditional methods of representing the resistance to heat transfer within the packing of a thermal 
regenerator have involved the use of lumped or bulk heat-transfer coefficients in which this resistance is 
added to the resistance between gas and solid at the surface of the packing. This paper describes how the 
chronological variation of this latitudinal solid conduction effect can be embodied within such lumped heat- 
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NOMENCLATURE 

maximum exit gas temperature calculated 
using 2-D method [K] ; 
maximum exit gas temperature calculated 
using 3-D method [K] ; 
minimum exit gas temperature calculated 
using 2-D method [K] ; 
minimum exit gas temperature calculated 
using 3-D method [K] ; 
Biot modulus ; 
specific heat [J kg- ’ K- ‘1; 
thickness of packing material of regenerators 

[ml ; 
surface heat-transfer coefficient [W m-* 
K-i]; 
lumped heat-transfer coefficient [W m-* 
K-l]; 
thermal conductivity of packing material of 
regenerator [W m-l K-l]; 
length of regenerator [m] ; 
mass flowrate of gas [kg s-l] ; 
mass of regenerator packing [kg] ; 
period length [s] ; 
surface area available for heat transfer in 
regenerator packing [m*] ; 
mean solid temperature [K] ; 
surface solid temperature [K] ; 
gas temperature [K] ; 
dimensionless time (3-D model); 
distance perpendicular to gas flow into re- 
generator packing from solid surface [m] ; 
distance along the length of the regenerator 

[ml ; 
dimensionless distance corresponds to x; 
parameter characterising packing geometry ; 

Greek symbols 
a, thermal diffusivity of regenerator packing 

material [m* s- ‘1; 
r, dimensionless distance corresponding to y 

(3-D model) ; 

dimensionless distance corresponding to y 
(2-D model); 
dimensionless time (2-D model); 
Hausen correction factor; 
time varying correction factor ; 
time [s] ; 
temperature ratio (A2 - B,)/(A, - B,); 
reduced length (3-D model) ; 
reduced length (2-D model); 
reduced period (2-D model); 
reduced time (3-D model). 

Superscripts 
, 
, refers to hot period; 
n 
9 refers to cold period. 

Subscripts 

f, refers to gas ; 
m, refers to solid. 

INTRODUCTION 

HAUSEN [l] developed a bulk heat-transfer coefficient 
h of the form 

1 d 
= = ‘+ -4” h h 2(n + 2)k 

where n = 1 for slabs (plane walls) of thickness d; n = 
2 for solid cylinders of diameter d; and n = 3 for 
spheres of diameter d. This incorporates the surface 
heat-transfer coefficient h and the resistance to heat 
transfer within the regenerator packing, as represented 
by the d&/[2(n +2)k] term. This coefficient can be 
used in the conventional model of the thermal perfor- 
mance of the regenerator, set out in the differential 
equations 

at 
hS(T,,, - t) = ni,C,L- 

aY 

i%S(t - T,,,) = M&,2 

1229 
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and discussed by many authors including Willmott 
[2]. At any position Y in the regenerator, the solid 
temperature T,,, used in these differential equations is 
the local mean temperature defined by equation (4) 

T,(Y, 7) = f s * T(x, Y, 7) dx (4) 
0 

where x is the direction into the wall of the packing 
material, perpendicular to the gas flow direction y. The 
advantage of this approach is that nonlinear features 
can be embodied into a regenerator model without 
calculating explicitly the internal chronological var- 
iations of solid temperature in the x-direction. In 
particular Willmott [3] and more recently Razelos and 
Benjamin [4] have used the bulk heat-transfer 
coefficient 6 as defined by equation (1) to represent 
regenerator performance under circumstances where 
the gas flowrate nil(‘) varies continuously with time in 
the cold period of regenerator operation. The same 
bulk heat-transfer coefficient can be used in other 
nonlinear models of regenerators including those 
embodying temperature dependent gas specific heat or 
radiant as well as convective heat transfer between gas 
and solid, for example. The importance of this possible 
use of equations (2) and (3) for nonlinear models 
justifies are-examination of the assumptions built into 
equation (1) and the development of improved 
coefficients. 

However the deficiency of this approach as it 
presently stands is that the Hausen 4H is a blanket 
factor applied as a constant throughout the duration 
of both the hot and cold periods. It will be seen shortly 
that it is computed as a time mean, averaging out any 
local chronological variations in the resistance to heat 
transfer within the packing wall. It turns out therefore 
if the exit gas temperature is computed using the 
Hausen c&r model (the so-called 2-D calculation 
method), there is a significant difference, see Fig. 2, 
between it and the exit gas temperature computing by 
the 3-D calculation method in which the unsteady 
state heat conduction within the wall of the packing is 
embodied explicitly within the mathematical model. 
The purpose of this paper is to describe the basis of a 
method whereby the 2-D calculation procedure is 
modified, by introducing a time varying b(7) factor, 
thereby enabling a closer correlation between the exit 
gas temperatures computed by the 2-D and 3-D 
methods of computation. 

IDEALIZATION OF REGENERATOR OPERATION 

Bahnke and Howard [5], Tipler [6], Willmott [7] 
and Razelos and Benjamin [4] all regard the effect of 
longitudinal (parallel to gas flow) heat conduction in 
the solid as negligible for most practical regenerators. 
This paper restricts consideration to the represen- 
tation of latitudinal solid conduction in a direction 
perpendicular to gas flow. 

Although in the long term, it is intended that any 
improved bulk heat-transfer coefficients can be built 
into nonlinear models with comparative ease, in this 

study it is assumed that the thermal properties of both 
gas and solid, the gas entrance temperature and the gas 
flowrate do not vary with time within a period, 
although they may be different in the hot and cold 
periods. 

Implicit in the definition of the mean solid tempera- 
ture T,,,(y, 7) in equation (4) is that the regenerator 
packing consists of parallel walls, cylindrical rods or 
spherical balls of heat storing material. The character- 
istic dimension of the packing is d [see equation (1)] 
while the depth of the packing is L. While con- 
sideration is restricted here to slabs, solid cylinders and 
spheres, it should be noted that Razelos and Lazaridis 
[8] considered a chequerwork of a hollow cylindrical 
geometry. Hausen initially considered the slab [l] but 
went on to deal with cylindrical and spherical forms of 
packing. 

DEVELOPMENT OF BULK HEAT-TRANSFER 
COEFFICIENTS 

In the middle of the regenerator, the solid tempera- 
ture varies linearly with time in both the hot and the 
cold period. This can be regarded as the consequence 
of there being an unchanging heat tlux in each period 
of regenerator operation at the surface of the solid at 
the position in the middle of the regenerator under 
consideration. Although the solid temperature varies 
nonlinearly with time close to the entrances of the 
regenerator as a consequence of there being an un- 
changing inlet gas temperature, and this is discussed 
extensively by Hausen [I], nevertheless it is assumed 
that the bulk heat-transfer coefficient developed on the 
basis of a constant heat flux at the solid surface in each 
period of regenerator operation, can be applied at all 
positions in the regenerator. Butterfield, Schofield and 
Young [lo] discuss this problem and show the assump- 
tion is acceptable in most cases for the form of 
lumped heat-transfer coefficient developed by Hausen. 

The lumped heat-transfer coefficient his associated 
with the mean solid temperature T,,,. It is related to the 
surface heat-transfer coefficient h and surface solid 
temperature To in such a way that the heat flux at any 
instant 7 computed using 6 is the same as that 
calculated using h. This is expressed by equation (5) 

@7)[t(7) - T,(7)1 = h[t(7) - T,(7)] (5) 

or 

h t(7) - 7-,(r) -= 
h(7) r(7) - T,(7) . (6) 

Hausen’s form of the lumped heat-transfer coefficient 
in equation (1) can be re-written 

h 

li(T)=l+ &d(7). 

Note that Bi = h d/2k, the Biot modulus. Equating the 
right-hand sides of (6) and (7) 

n + 2 T,(7) - T,(r) 

$(7) = T{ t(t) - T,(T) . 
(8) 
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The unsteady-state conduction of heat in the walls 
comprising the regenerator chequerwork in a direction 
perpendicular to gas flow is represented by equation 

(9) 

aT 1 a aT 
-= 
aw zn-1 az “-‘Z ( > 

(9) 

where the dimensionless time W = 4uz/d2 and the 
dimensionless distance Z = 2x/d. In the middle of the 
packing, there is zero heat flux from considerations of 
symmetry 

aT - 
az Z=l= 

0. (10) 

At the surface of the solid, the heat transfer between gas 
and solid is represented by equation (11) 

dT 

az Z=. 
= Bi[T,(z) - t(t)]. (11) 

To evaluate the 4(z) factor on the basis of a constant 
heat flux at the solid surface in each period of 
regenerator operation, it is necessary to solve equation 
(9) for cyclic equilibrium with boundary condition (10) 
and with the surface heat flux 

Bi[T&) - t(z)] = fq (constant) (12) 

for equal periods more generally - q for the hot period, 
+qQ’/W for the cold period. 

Recently Kern [l l] presented an analytical solution 
to this equation (11) for n = 1 for square wave gas 
temperatures rather than square wave heat flux at the 
solid surface. This analytical approach is tedious and 
leads to rather lengthy expressions for solid tempera- 
ture, which are important in the development of 4(T) in 
equation (8). Kern mentions the possible need to sum 
the infinite series developed for up to 8000 terms in 
certain cases. In this paper these problems are avoided 
by solving equation (9) numerically. 

At cyclic equilibrium, any local value of 447) ob- 
tained from equation (8) is independent of the size of 
the temperature difference between gas and solid 
surface [t(s) - T,(t)] from the linearity of this 
expression (8). It follows that for a constant heat flux 
Bi[t(r) - T,,(z)] in the hot and cold periods of 
regenerator operation, 4(~) is independent of Biot 
modulus. The constant heat flux can be made up of a 
large temperature difference and small Biot modulus 
or vice versa: in either case, the value of c$(T) at any 
instant remains unchanged. 

The form of the 4(z) is thus a function only of the 
dimensionless period lengths R’ and a” (where R’ = 
4aP’fd2 and Q” = 4aP”/d2). 

However, the factor &T) becomes a function also of 
Biot modulus for cases corresponding to a time 
varying surface heat flux. Butterfield [lo] has noted 
this but has concluded that for practical situations, the 
overall effect of Bi can be neglected. 

For the square wave heat flux, the established 
parabolic temperature profile at the end of the cold/ 
hot period is completely distorted at the start of the 

subsequent hot/cold period (see Fig. 1) and remains so 
until the new parabolic profile is formed. The shorter 
the period lengths R’ and R”, the more severe the 
overall effect of these inversions of the parabolic 
profile. 

Hausen’s approach [l] to this problem was to take a 
chronological mean &, of 4(~) over the whole cycle of 
regenerator operation, based on a square wave heat 
flux 

1 fP’+ P” 

or 

4” =I 
R’+w o J Wf’)dW 

if dimensionless time W is employed. 
This mean value 4~ was built into the lumped heat- 

transfer coefficient, using equation (l), the same mean 
value being applied to both hot and cold periods. 

Hausen developed a simple form for the mean value 

&, namely 

&‘l_ l L-!- 
I 1 (n + 3)2 - 1 R’ .,, 

(14) 

for 

; + ; < S(n + 1)/2. 

For other values of l/U + l/Q” 

where E = 2.7 for plates ; E = 9.9 for cylinders ; and E = 
27.0 for spheres. 

The use of the time mean (13) averages out over the 
whole cycle and therefore conceals the local (in time) 
effect of the inversions of the parabolic profile upon 
regenerator performance. Willmott [7] examined this 
problem in detail for slabs by comparing the solution 
of the differential equations (2) and (3) using the 
lumped heat-transfer coefficient h with the solution 
computed using the more complete model in which the 
internal heat diffusion within the solid is represented 
explicitly using the diffusion equation (9) with boun- 
dary conditions (10) and (11); the solid and gas tem- 
peratures down the length of the regenerator are 
related by the dimensionless form of equation (2), (but 
using h and To instead of h and T,,,), namely 

at 
r=Ta-’ 

where 5 = hSy/m,c&. Equations (9), (lo), (13) and 
(16) comprise what is called the 3-D model. Equations 
(2) and (3) can be reduced to similar dimensionless 
form 

at 
i=Tm-’ 
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End of cqld,a\\\) 

I 

X Distance Into chequerwoll 

FIG. 1. Solid temperature profile changes as a period of operation progresses. 

dT 
2=t--T,,, 
all 

where ( = hSy/ni,C,L and 9 = hSrjni,C, and these 
equations comprise the 2-D model. 

The configuration and operation of the regenerator 

can be summarized by a set of dimensionless para- 
meters set out in Table 1. 

Willmott [7] compared the two idealizations for 
slabs by calculating the chronological variation of exit 
gas temperature using both the 3-D and 2-D models 
for the same range of regenerator configurations and 
operating conditions. A typical comparison for the 
cold period is displayed in Fig. 2. The 2-D model 
predicts a linear variation of exit gas temperature 
whereas the 3-D model forecasts an initially higher but 
sharply declining exit temperature, at a time when the 
solid temperature parabolic profile is suffering an 
inversion. Subsequently this exit temperature becomes 

(18) Table 1. Regenerator dimensionless parameters 

3-D model 
Hot 

period 
Cold 

period 

Reduced length 

Reduced time 

Biot modulus 

2-D model 
& factor 

Reduced length 

Reduced period 

h’s 
A’ = - 

ni;c; 

4aP 
R’=7 

h”S A” _ 

ti;c; 

R” _ 4aP” 
dZ 

Bi” = h”d 
2k 

A,=Rs I-B A” _ 

l+c, ni;c; 
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linear in variation with approximately the same gra- 
dient as that predicted for the 2-D model; this 
corresponds to the time when the parabolic profile is 
well established, remaining so until the end of the 
period under consideration. The difference in the 
model predictions was parameterized using 

A, - 4 II/=- 

A3 - 83 
(19) 

(see Fig. 3). The smaller the value of J/, the sharper the 
effect of the reversals upon the acceptability of the 
Hausen assumption of being able to use an average &, 
factor. Indeed, the shorter the cyclic times R’ and the 
smaller the 4” factor [see equations (14) and (15)] and 
the smaller the I,+ parameter, and hence the poorer the 
comparison between the 2-D and 3-D models. 

IMPROVED LUMPED HEAT-TRANSFER 
COEFFICIENTS 

The kernel of the proposals in this paper lies in the 
representing of inversion of the solid temperature 
profile within the lumped heat-transfer coefficient for 
the 2-D model, thereby avoiding use of the possibly 
computationally uneconomic 3-D model. This is 
achieved by retaining the factor $(T) as a function of 
time using equation (18) directly. This 4(t) is com- 
puted for a square wave heat flux Bi [t(r) - T,(t)}. 

However, the inversion of the parabolic profile after 
each reversal is manifest explicitly in the time variation 
of T,(r) - T,,,(7) and hence of 47). The lumped heat- 
transfer coefficient represents this time variation using 
equation (17). The values of A’, A”, fi’, I=I” change 
continuously, following the time variations of 447). 

start of Time End of 
period cold period 

FIG. 2. Comparison between exit gas temperatures computed 
using 3-D equations and using 2-D equations. 

The method of calculation we propose is in two 
stages. Firstly, the variation of d(r) for the hot and cold 
periods is computed by solving numerically equations 
(9), (10) and (11) for cyclic equilibrium, for a square 
wave heat flux with the values of !Z and .,, particular 
to the regenerator operation under consideration. 
While this takes no advantage of any possible 
analytical solution to this problem, it allows all 
possible combinations of values of R’, Q”, to be dealt 
with directly. This implies possibly different forms of 
447) for the hot and cold periods. The second stage of 
the calculation of regenerator performance consists of 
a conventional solution of the 2-D equations (2) and 
(3) using the time varying 47) factor. At this second 
stage, it is implied that equations (2) and (3) may also 
embody nonlinear features such as the temperature 
dependence of gas and solid thermal properties or the 
time variation of gas flowrate. 

FORM OF THE TIME VARYING 4(r) FACTOR 

At the start of a period, the internal temperature 
profile of the solid is that remaining from the end of the 
previous period so that at the start of the hot period, 
for example, t(7) - T,,(7) > 0 but T,(7) - T,,,(r) < 0. 
As the period progresses, the solid temperature profile 
is first distorted and then becomes inverted when T,(7) 

- T,,,(r) > 0. In the symmetric case, the absolute value 
of T,,(7) - T,,,(7) at the start of a period is equal to that 
at the end of the period at cyclic equilibrium. If 4(O) 
is the value of the factor at the start of the period and 
4(n) is the value of the end of a period, then it follows 
from equation (8) that for the symmetric case 

4(O) = -M%. (20) 

In the general case, the factor 447) varies within the 
range - 1 and + 1 as the period under consideration 
progresses. 

Displayed in Fig. 4 are graphical representations of 
typical examples of the chronological variation of d(r) 
for Q = 1.3333 (the corresponding value of & is 0.9) 
and fl = 0.2216 (+a = 0.5). It can be seen that at the 
start of a period 447) increases rapidly as the internal 
solid temperature profile is inverted. Once this in- 
version is completed, 4(7) settles to a fixed value. 

APPLICATION OF THE TIME VARYING #(T) 
FACTOR 

We restrict our considerations to slab geometry and 
to the symmetric case in this paper. In a later paper it is 
proposed to examine the use of the q%(7) for unbalanced 
regenerators, and to other geometries. 

Presented here are the values of I,+ computed with 
#(7) for 4H = 0.9 and +H = 0.8 and again Ii = 1. 
These are shown in Tables 2 and 3. 

Both the &, and 47) models compute similar values 
for the thermal ratio ; the values are within 0.005 of one 
another over the range of parameters presented in 
Tables 2 and 3. This clearly vindicates the Hausen 
approach to the problem in particular the use of the & 
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0.6 f++ =0.8 

&= 0.7 

+,,=0.6 

+,=0.5 

“,:i 
I 2 3 4 5 6 7 8 9 IO 

ii Reduced length 

FIG. 3. Variation of $ with respect to reduced length A and the Hausen I& factor. 

1(1= 
(max exit gas temp - min exit gas temp) 2-D 

(max exit gas temp - min exit gas temp) 3-D 
for li = 1. 

Table2. Valueoftheratio $ = (A2 - BJA, - B,)for 4” = 
0.9 and li = 1 

Reduced 
length 

A 
4” model I#+) model 

values values 

1 0.6484 1.1864 
2 0.6126 1.0859 
4 0.6926 1.0445 
8 0.6983 1.0433 

10 0.6990 1.0438 

Table 3. Value of the ratio + for 4” = 0.8 and li = 1 

Reduced 
length 

A 
& model d(s) model 

values values 

1 0.467 1 1.3137 
2 0.5085 1.1217 
4 0.5375 1.0870 
8 0.5454 1.0922 

10 0.5469 1.0923 

parameter for the calculation of time average tempera- 
ture behaviour. 

The development of the &7) model assumes that the 
square wave heat flux at the solid surface, typical of the 
thermal behaviour on the middle of a regenerator is 
applicable at all positions. It is well known that the 
constant entrance gas temperature gives rise to an 
exponentially decreasing (with time) heat flux at this 
entrance; the importance of this nonlinear behaviour 
increases the shorter the regenerator. Thus the value of 
I(/ in general decreases with increasing reduced length 

-101 
0.0 I.0 

w 
R 

FIG. 4. Chronological variation of 4(W) for r$a = 0.9 and 4” 
= 0.5 (Symmetric case 51 = U = W). 

I? for the c$(T) model. Even in the worse case (A = 1) 
presented, the value of $ is closer to the ideal value of 1 
for the 4(r) model than with the &, Hausen model. 

LIMITATIONS OF NEW METHOD 

Equation (9) can be re-written as 

&;[l+Em]. (21) 

Now ~J(T) is computed as a function of 0 alone and, as 
has been discussed, 4(t) lies in the range [ - 1, 11. It 
follows that if, for any stage of the calculation, b(z) < 0 
and IBi4(7)l > n + 2, a negative value of h(r) may be 
computed. It turns out therefore, since the limiting 
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values of 4)(r) for the start of a period are close to - 1 
for many typical regenerator configurations, this 
method should not be used in general for values of 
Biot modulus Bi > n + 2. 

Should the b(t) model be used with too high values 
of Bi the regenerator simulation becomes completely 
unstable and extremely large positive and negative 
temperatures are computed. 

Provided this limitation is observed, the 447) meth- 
od can be used with confidence. It might be argued 
that the method should not be used for small reduced 
lengths A. The choice then to be made is between the 
full 3-D method and the #(r) method and the user of 
the computer simulation of the regenerator must 
decide what errors, measured perhaps in terms of +, 
can be accepted relative to available experimental 
accuracy. However, it is certain that J/ is always closer 
to unity for the 447) method than the +n method for all 
A provided Bi < n + 2. 

THE HEGGS AND CARPENTER APPROACH 

In a recent paper, Heggs and Carpenter [12] 
developed what they called a “Modified Infinite- 
conduction System”. As in the work presented here, 
Heggs and Carpenter recognized that if the 2-D model 
was to be used to approximate the regenerator perfor- 
mance predicted by the 3-D model, a time varying heat 
transfer coefficient should be introduced. Whereas we 
propose the use of the time varying 447) factor to 
generate a time varying lumped heat-transfer 
coefficient /i(r), equation (21), Heggs and Carpenter 
chose to modify the surface heat-transfer coefficient by 
a multiplication factor c(7), that is /i(7) = he(r). 

Both approaches are equivalent if the method of 
determining #J(T), explicitly in our method, indirectly 
in the method of Heggs and Carpenter, is the same. 
This can be expressed for the plain wall in the following 

way 

1 1 1 d&t) 
‘-= -=-+ .._.A22 

h(7) h(7) h 31, 

or 

1 
-=1+$(r). 
47) 

(22) 

This equation (22) highlights what must be the limi- 
tation of both approaches. If at any instant 447) = 

-3/E, then g(r) becomes infinitely large. In such a 
case, the modified 2-D simulation will become com- 
pletely unstable. 

In so far as the 47) treatment of the problem helps to 
throw light on the potential instability of the metho- 
dology for large values of Biot modulus, it is partic- 
ularly useful. However Heggs and Carpenter do not 
develop the (b(r) factor as a function of M and 12” alone 
and do not solve the diffusion equation (9) with a 
square wave heat flux [equation (12)] boundary 
condition. Instead they solve equation (9) for a gas 
temperature which varies linearly with time, with at/& 
= R, in the hot period and at/& = -R, in the cold 

period. Appropriate values of R, are presented graph- 
ically having been estimated from a whole series of 
computational experiments using the 3-D model. 

The development of the R, factor is based on 
symmetric regenerators although it is suggested that 
an average value of R, can be used for unbalanced 
regenerators using the hot and cold parameters 
separately. 

The chief disadvantage of the Heggs and Carpenter 
approach lies in the fact that appropriate values of R, 

must be interpolated from a set of graphs since R, is a 
function of the three dimensionless parameters em- 
bodied in the 3-D model for the symmetric case. 

In the method proposed here, the time variation of 
4(r) can be computed for any combination of Q’ and 
Q” and quite independently of any other parameters. 

However, the overriding consideration in favour of 
both the #47) and E(T) approaches is that it is often 
quite impracticable to compute regenerator per- 
formance using a 3-D model embodying nonlinear 
features such as temperature dependent specific heat 
or radiative heat-transfer coefficients. The intro- 
duction of the #(7) approach adds little in the way of 
complications to 2-D models embodying such 
nonlinear features. 

It is in this area that we believe the strength of our 
proposals lies and we hope other workers in the field 
will be able to exploit the 447) method for the 
particular nonlinear regenerator models they are 
required to examine. 
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COEFFICIENTS GLOBAUX DE TRANSFERT THERMIQUE DES REGENERATEURS DE 
CHALEUR 

Rbume-Des methodes traditionnelles de representation de la resistance au transfert thermique dans 
l’assemblage dun regenerateur de chaleur ont conduit a l’usage de coefficients globaux de transfert 
thermique dans lesquels la resistance est ajoutee a la resistance entre gaz et solide a l’interface. Cet article 
d&it comment la variation temporelle de l’effet de conduction dans le solide peut itre incorporee dans ces 

coefficients globaux. 

ZUSAMMENGEFASSTE WARMEUBERTRAGUNGSKOEFFIZIENTEN FUR THERMISCHE 
REGENERATOREN 

Zusammenfassung-Traditionelle Methoden zur Darstellung des Wiirmeiibertragungswiderstandes in der 
Speichermasse eines thermischen Regenerators haben von zusammengefal3ten oder mittleren Warmeiiber- 
tragungskoeffizienten Gebrauch gemacht, bei denen dieser Widerstand zum Ubergangswiderstand zwischen 
Gas und Feststoff an der Oberfliiche der Speichermasse hinzugenommen wird. In dieser Arbeit wird 
beschrieben, wie die zeitliche Anderung dieses Feststoff-Querleitungseffektes in solchen zusammengefaBten 

Wiirmeiibertragungskoeffizienten beriicksichtigt werden kann. 

3@0EKTBBHbIE K03@@WHHEHTbI TEl-IJIOllEPEHOCA B TEl-UIOBbIX 
PEI-EHEPATOPAX 

AHHOTZILUMI - Tpanuuuonnbre MCTOAbI Il~ACTaBlWUlR TCpMHWCKOrO COllpOTHBJWHNl B HLV.ZlAKe 

TenJlOBOrO PtYCHCpaTOpa T&R6yEOT nCnOJIb3OBaHna 3+$eKTHBHbIX HJtW 06ISMHbIX K03’$‘$HWCHTOB 

TeIIJIOIIeptZHOCa, B KOTOPbIX 3T0 COIIpOTEiBnCH&iC CyMM~pyeTCK C TCPMUSCCKHM COtIpOTHElJICHEiCM 

MexAy ra30h.I n TBCpAbIM TeJIOM Ha IIOBCPXHOCTH HaCaAKH. nOKa3aH0, KaKHM o6pasoM B 3+#EKTWBHbIX 

x03+$nnrienrax rennonepenoca broxcer y~arbrearbca n3Menenne a0 apeMenu nonepeqnoff nepenaqri 
TCIUIa TUUIOII~BOAHOCTbH) B TBepAOM TeJIe. 


